Les meilleures offres sur Amazon en ce moment
Jun 30, 2023Le président de l'Agence spatiale turque, Serdar Hüseyin Yıldırım : « Ils créent des tremblements de terre grâce aux armes dans l'espace » » Guide de l'expatrié Turquie
Jul 16, 2023Scott présente les nouvelles cannes à mouche Swing, conçues pour ceux qui le font
Jul 20, 2023Flash sur les bénéfices (ATI) ATI publie un chiffre d'affaires de 1,05 milliard de dollars au deuxième trimestre, contre 1,07 milliard de dollars pour l'estimation réelle
Jul 10, 2023BNP vend Dollar AT1 avec de nouvelles conditions à la suite du Crédit Suisse
Jul 08, 2023L'évolution du régime géodynamique de la Terre enregistrée par les isotopes du titane
Nature (2023)Citer cet article
6022 Accès
104 Altmétrique
Détails des métriques
Le manteau terrestre a une structure à deux couches, les domaines supérieur et inférieur du manteau étant séparés par une discontinuité sismique à environ 660 km (réf. 1,2). L'ampleur du transfert de masse entre ces domaines du manteau tout au long de l'histoire de la Terre est cependant mal comprise. L'extraction de la croûte continentale entraîne un fractionnement isotopique stable du Ti, produisant des résidus de fusion isotopiquement légers3,4,5,6,7. Le recyclage du manteau de ces composants peut conférer une variabilité isotopique du Ti traçable dans le temps profond. Nous rapportons des rapports 49Ti/47Ti de très haute précision pour les chondrites, les anciennes laves dérivées du manteau terrestre datant d'il y a 3,8 à 2,0 milliards d'années (Ga) et les basaltes des îles océaniques modernes (OIB). Notre nouvelle estimation de la Terre silicatée en vrac de Ti (BSE), basée sur les chondrites, est 0,052 ± 0,006 ‰ plus lourde que le manteau supérieur moderne échantillonné par les basaltes normaux des dorsales médio-océaniques (N-MORB). Le rapport 49Ti/47Ti du manteau supérieur terrestre était chondritique avant 3,5 Ga et a évolué vers une composition de type N-MORB entre environ 3,5 et 2,7 Ga, établissant qu'une plus grande partie de la croûte continentale a été extraite au cours de cette époque. Le décalage de +0,052 ± 0,006‰ entre l'ESB et les N-MORB nécessite que moins de 30 % du manteau terrestre soit équilibré avec du matériel crustal recyclé, ce qui implique un échange de masse limité entre le manteau supérieur et le manteau inférieur et, par conséquent, la préservation d'un réservoir primordial du manteau inférieur pour la majeure partie de l'histoire géologique de la Terre. Les OIB modernes enregistrent des ratios variables 49Ti/47Ti allant des compositions chondritiques aux compositions N-MORB, indiquant une perturbation continue du manteau primordial de la Terre. Ainsi, la tectonique des plaques de style moderne avec transfert de masse élevé entre le manteau supérieur et le manteau inférieur ne représente qu'une caractéristique récente de l'histoire de la Terre.
L’histoire de l’accrétion des planètes telluriques est rythmée par une étape océanique globale de magma, qui conduit à une différenciation planétaire et à l’établissement de réservoirs importants, tels que le noyau, le manteau et la croûte. L'évolution et la modification ultérieures de ces réservoirs peuvent affecter substantiellement les régimes thermiques et géodynamiques des planètes. Sur la base de la minéralogie, de la rhéologie et de la vitesse sismique, il a été établi que la structure du manteau terrestre est recouverte d'une discontinuité sismique principale à environ 660 km séparant les domaines supérieur et inférieur du manteau1,2. Cependant, la mesure dans laquelle le transfert de masse se produit au sein du manteau tout au long de l’histoire géologique reste très controversée. Les données de tomographie sismique suggèrent que les dalles subductées peuvent pénétrer dans le manteau inférieur et, au taux actuel d'échange de masse, il n'est pas prévu que le manteau primordial de la Terre survive après une convection prolongée à l'échelle du manteau entier8,9,10. Parallèlement, des études basées sur les gaz rares11,12,13,14,15, ainsi que sur les isotopes du tungstène16 et du néodyme17, ont plutôt suggéré l'existence de domaines primordiaux du manteau dans la Terre profonde moderne. Bien que la préservation d'un réservoir primordial du manteau inférieur sur de longues échelles de temps géologiques soit débattue18,19, certains modèles géodynamiques montrent que la préservation des domaines primordiaux du manteau peut se produire dans un régime de convection de style moderne sur l'ensemble du manteau caractérisé par une subduction profonde20. En outre, la modélisation numérique et les observations géologiques21,22,23,24,25 suggèrent que le régime de convection de la Terre et, par conséquent, le style de subduction des plaques peuvent également avoir évolué considérablement au fil du temps en raison de changements dans le flux et le transfert de chaleur25, 26. En tant que tel, une solution potentielle à l'énigme est que le transfert de masse élevé entre le manteau supérieur et le manteau inférieur déduit de la tomographie sismique est une caractéristique relativement récente de l'histoire géologique de la Terre, de sorte que le réservoir primordial, moins dégazé du manteau inférieur, a subi des perturbations, mais n’est pas encore entièrement détruit27. Cette hypothèse n’a pas été entièrement évaluée en raison de l’absence d’un outil géochimique sans ambiguïté capable de retracer fidèlement les échanges de masse entre les réservoirs du manteau et de la croûte dans le temps profond.
2.0.CO;2" data-track-action="article reference" href="https://doi.org/10.1130%2F0091-7613%282001%29029%3C1083%3AMACFBC%3E2.0.CO%3B2" aria-label="Article reference 58" data-doi="10.1130/0091-7613(2001)0292.0.CO;2"Article ADS CAS Google Scholar /p>